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Abstract—Wireless Cost based performance of a network is 

very much essential for a network planner prior implementation 

of a network. In this paper we propose a cost based analysis of 

H2/D/1 and E2/D/1 traffic models based on the concept of a 

previous analysis of M/G/1 model. Here, the arrival rate of 

packets follows hyper-exponential and Erlangian distribution 

and the service time of both traffic are deterministic. It has been 

found that distinct minima of the cost profile of H2/D/1 but that 

of E2/D/1 is almost hyperbolic which gives the opportunity to a 

network planner to select exact traffic parameters to attain the 

service of minimum cost. 

 

Index Terms— LST, Mean Waiting Time, SCV, Probability 

of Immediate Service, Delay, Functional Equation.  

I. INTRODUCTION 

  Non–Markovian traffic model of deterministic service 

time is essential for analysis of packet traffic of fixed sized 

cell especially for ATM networks. Three basic parameters: 

probability density function (pdf) of call/packet arrival rate, 

pdf of length of service time and size of buffer of a router are 

expressed in generalized notation A/B/C/D as explained in 

[1]-[3]. For example:  Recently, M/G/1/K traffic model is 

widely accepted to evaluate performance of packet traffic. In 

standard M/G/1/K system the arrival process follows Poisson 

rule with λ (packets per unit time), the service time is 

identically distributed random variable which follows 

general distribution. In this model only one server is 

available and the length of the queue or the size of buffer is 

k-1, i.e. the maximum k-1 users can be placed in the waiting 

position. Statistical analysis of M/G/1 system is shown in [4] 

and [5]. A similar analysis is also shown in context of 

network traffic in [6], where the authors presented the 

analytical model of M/D/1/m traffic to evaluate the 

performance of connection oriented and connectionless 

ATM traffic taking deterministic service time. In [7], the 

authors relate the total cost of a call with the number of high 

usage circuit to get optimum number of high usage links in a 

network of alternate routing provision. The paper only 

considers the rent of high usage link and tandem exchange 

link. Like [8], in this paper, four parameters: cost of losing a 

customer, customer delay, size of buffer and processor speed 

are related with the probability states to get the optimum cost 

in routing a call. In [9] and [10], authors evaluate 

non-Markovian traffic parameters of M/D/1(m) system 

suitable for ATM network. In [11], the author deals with 

non-Markovian arrival process to determine the stationary 

state distribution, where two traffic models  

 

Hn/G/∞ and En/G/∞ are considered. The paper shows that 

the performance of   En/G/∞ is better than that of Hn/G/∞. In 

[12], processing time of a manufacturing system is taken as a 

random variable to determine the mean waiting time in a 

GI/D/1 queue. The paper also gives the complete analytical 

method of determination of mean waiting time of M/D/1 

system using DTMC where the authors consider that a queue 

experiences failure when a job arrival process is Poissonian. 

In [13], a cost model of internet traffic is proposed where the 

cost of a network elements are calculated and distributed over 

different services/users taking the quality of service (QoS) as 

a parameter. The cost model is named as Total Element Long 

Run Incremental Cost (TELRIC) and authors calculate the 

total cost as the sum of fixed cost of network element and cost 

per BW×BW provided by the network. The paper compares 

unit cost against BW for M/M/1 and G/G/1 traffic models. In 

this paper our aim is to determine the traffic parameters 

(functional equation, mean waiting time, probability of delay 

and immediate service) analytically then bring them under 

cost based approach of [3] and [14] to achieve optimum cost 

condition of the network. The rest of the paper is organized 

as follows: Section II provides the spectral solution of the 

GI/G/1 traffic in generalized form, Sec. III deals with the 

derivation of the traffic parameters of H2/D/1 and E2/D/1 

systems along with the cost analysis of the network while 

Sec. IV provides the results according to the proposal and 

analysis of the previous part and finally Sec. V concludes the 

entire analysis. 

II. SPECTRAL SOLUTION OF GI/G/1 

   The timing diagram of GI/G/1 traffic model is shown in 

Fig. 1. The arrival instants of n and (n+1)-th cells are Cn and 

Cn+1 where the corresponding interarrival time is tn+1. The 

waiting time and service time of the n-th cell are Wn and Xn 

respectively. The traffic parameters of GI/G/1 model are the 

followings: A(t) is the probability density function (pdf) for 

interarrival times between customers, B(x) is the pdf of 

service time for the customers (independent), Service 

discipline: first come first service (FCFS), Cn is the n-th 

arriving customer, tn = Tn-Tn-1 is the interarrival time 

between Cn and Cn-1; here Tn and Tn-1 are the arrival instants 

of the n-th and (n-1)-th calls, xn is the service time of Cn, wn is 

the waiting time (in queue) for Cn. The interarrival time {tn} 

and the service time {xn} are two random variables; where 

they are described by the pdfs A(t) and B(x) independent of 

index n. The waiting times for (n+1)-th call is the difference 

between the arrival instant of Cn+1 and the instant of start of 

its service is expressed as [15]:   
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Let us define a random variable: 
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From Eqs. (1) and (2), we have 










.00

,0
1

nn

nnnn
n

UWif

UWifUW
W     (3) 

The probability Cn(u) is defined as 
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We have 
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Here un is independent of wn , therefore, Eq. (5) becomes 
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Taking n , Eq. (6) becomes 
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Where we have dropped the subscripts. Equation (7) above is 

known as Lindley‟s integral equation [16], where W(y) = 0 

for y < 0. Let us perform integration by parts in Eq. (7), we 

obtain  
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According to [15], C(y -w) = 0 as w →∞, similarly w(0-) =0. 

Therefore, we have 
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Changing the variable u = y – w, we get another form of Eq. 

(8):  
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The „complementary‟ waiting time of W(y) is 
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Adding Eqs. (10) and (11), we obtain 
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for all real y. The Laplace transform (LT) of W_(y) is 
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Similarly, the LT of waiting time PDF W(y) is 
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According to the definitions of )(s and W* (s), we can 

relate them as 

                                  )()( * sWss  .                 

(15) 

Defining the pdf of u as c(u) = dC(u)/du = a(-u)* b(u), we 

have 

                            )()()( sBsAsC   .                         (16) 

 

Arrival Cn Arrival Cn+1 

 Start of service of Cn 
Start of service of Cn+1 

Wn Waiting time of Cn 

Wn+1 

Xn Service time of Cn 

tn+1 

Fig. 1 Interarrival and Service Time of GI/G/1 Traffic 
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Taking the LT of Eq. (12), we have 
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which can be written as 
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Let us consider A*(s) and B*(s) to be rational functions of s, 

where 

                       
)(

)(
1)()( **

s

s
sBsA







.        

(19) 

From  Eqs. (18) and (19), we have 

                             
)(

)(
)()(

s

s
ss




 




 .        

(20) 

From the Liouville‟s theorem, we know that if f (r) is analytic 

and bounded function for all finite values of r, then f (r) is a 

constant. Therefore, we can write 
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Example-1 

   Let us consider the M/M/1 traffic model where, the 

cumulative distribution function (cdf) of the interarrival time 

is tetA 1)(  and the pdf of interarrival time 

is teta  )( . The cdf of the service time is, 
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half plane for )(s , we have 

                            
us

ss
s






)(
)(


   

and  

                             ss   )( . 

Therefore, 

    






 


 1/1

)()(
00

us

s
Lt

s

s
LtK ss , 

and 

                         
  

)(

1
)(











ss

s
s . 

 

 

 

 

 

 

 

 

                   

Fig. 2 Pole-zero diagram of )(/)( ss   . 

 

Again, )()(* sssW   , therefore,  inverting )(* sW , we 

obtain 

                       yeyW )1(1)(   ;  y ≥ 0. 

Example-2 

   Let us consider the D/M/1 traffic model. The cdf, pdf and 

LT of the interarrival time are 
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Where Tu  .  Therefore,  

                          )()( Tubuc  ; u ≥ -T. 

Again,  
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Taking the co-efficient of yl
e 2 , we have  
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Since D(0) = 1+l1 and using the above relations, we get 

1-D(0)=e-μD(0)T; which has a zero and a nonzero root. Let   

be the nonzero root of the above equation.  Then the pdf of the 

delay is  

                            yeyD  11)( ; y ≥ 0. 

Example-3 

    Let us consider the case of a voice traffic (variable bit rate 

voice source) where the interarrival time follows the 

hyper-exponential pdf and the service time follows the 

Erlangian distribution. The Kendal‟s notation of the traffic 

becomes H2/E2/1. 

    The cdf, pdf and LT of the interarrival time are:  
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Respectively. 
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We have found three roots (one positive and two negative) of 

P(s), and these are:  λ2 < ρ1 < λ1, -2μ < -ρ2 < 0 and – ρ3. 

Finally,  
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and the pdf of the delay is 
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III. THE TRAFFIC MODEL  

   The most convenient way of deriving the parameters of 

H2/D/1 or E2/D/1 traffic is the spectral solution technique of 

general independent (GI) arrival traffic model of the previous 

section. Let us consider the n-th call of GI/G/1 system where 

the service and waiting times are Xn and Wn respectively. If 

the interarrival time between the n-th and (n+1)-th calls is 

Yn+1 then,  Wn+1 = max(Wn+Xn-Yn+1, 0). At steady state 

condition, i.e as n→∞, Wn→W, (Xn-Yn+1) →U, then W = 

max(0,W + U). 

     Let u(t) and w(t) be the density functions of U and W 

respectively, then we have [17]:  
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Since U = X - Y, the Laplace-Steieltjes transform (LST) of U 

is: )()()( **   bau ; when )(* a  and )(* b  are the 

LST of X and Y respectively. Taking LT of Eq. (24), we have 

)()()()( ****  WuWW   , 

From which we obtain  

  )(1)()()( ****   WbaW .       (25) 

It is to be mentioned here that 1)()( **  ba  has a special 

factorization of the form [18]:  

)(

)(
1)()(

*

**








ba ,        (26) 

Where the conditions of )(  are given in [14]. Using the 

above relations and LST of W(t), we get the probability of 

immediate service as  

 






)(
0

0





  LtW , 

and  the mean waiting time   






d

Wd
LtW

)}({ *

0 . 

In H2/D/1 traffic model, the interarrival time follows the pdf 

of the Hyper-exponential distribution, whose LST is:  

2

2

1

1* )1(
)(


















kk
a .                 (27) 

The service time is deterministic whose LST is: 

 heb )(* .                    (28) 

To determine the mean waiting time, we need the roots of the 

following functional equation [8]: 

0))(()()( 21
*   by ,                     (29) 

where 

)()1()()( 1221   kky .             (30) 

The characteristics equation is derived by taking )0(  and 

)0( of Eq. (26) for H2/G/1 traffic. 

    The mean waiting time of H2/G/1 is expressed as 

021

21 1

)1(

])1([











kk
WW M

,           (31) 

where WM is the mean waiting time of the equivalent M/G/1 

model (with the same arrival rate) and is given by 

)1(2

)1(
2










hC
W s

M ,                 (32) 

Where 2
sC is the squared coefficient of variation (SCV) and 

is expressed as 222 / mCs  . 

   The probability of immediate service PI is given by the 

following expression: 

0

21)1(



IP .                (33) 

The probability of delay is then 

ID PP 1 .                    (34) 

In particular, if only  and 2
aC  (called the squared 

coefficient of variance (SCV)), are given, and setting the 

symmetric condition, we have 

21

1



kk 
 , 

where 


















21

2
11

2

1

aC
k ,  k21  ,  )1(22 k .    (35) 

     In E2/D/1 traffic model, the interarrival time follows the 

pdf of the Erlangian distribution, whose LST is  

k

k

k
a )()(*







 .                  (36) 

To determine the mean waiting time, we need the roots of the 

following functional equation: 

0)()()( *  kk kbk  .                             (37) 

The mean waiting time of E2/G/1 is expressed as:  

          










1

1

2
1

)1(2

1 k

i i

a
M h

C
WW


.                (38) 

 

The probability of immediate service PI  can be written as  









1

1

1)1()( k

i i

k

I
k

P



.                       (39) 

Probability of delay is then given by Eq. (34).       

   The cost parameters used in this paper are the following [1, 

8]:  

     B = Waiting cost for one customer, 

   W = Mean waiting time, 

    PI = Probability of immediate service,  

   PD = Probability of delay, 

     cxC / Cost of buffer of sufficient size to hold one 

                   Customer, 

     cxD /  Cost of a processor which can process 

                   Customers at rate x/1 , 

x  = Mean service time. 

     Now, we find the total cost of operating the system per 

unit time. Since the proposed traffic model processes infinite 

queue hence cost due to lost of customer of [8] is excluded 

here in evaluating the total cost of operating system per unit 

time. The expression of cost   is 

 
dIcD

x

D
P

x

C
PBWxDC  ,, .                    (40) 

Let us assume that speed of the buffer memory matches with 

that of the processor, then selecting for c = 1. Let us select d 

= 2 like [8], therefore, the expression of the cost takes the 

following form:  

 
2

,,
x

D
P

x

C
PBWxDC ID  .                    (41) 
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IV. RESULTS 

   The objective of this research work is to evaluate the 

relationship between the size of buffer and the mean service 

time ( x ) that minimizes the cost for the four different 

service time distribution cases. The parameters that we used 

here are: buffer size varies from 1 to 60; call arrival rate, λ = 

0.93 cells/ms; call termination rate, µ = 1cells/ms; cell 

length, Lc = 53 bytes for ATM transmission; transmission 

speed, c = 150 Mbps; cost of losing one customer, A=4Mu; 

waiting cost for one customer, B = 0.03MU; cost of buffer of 

sufficient size to hold one customer, C = 0.02MU; cost of a 

processor which can process customers at a rate x/1  , D = 

0.07MU; call termination rate-1,  µ1 = 1 per unit time; and 

call termination rate-2, µ2 = 1.2 per unit time. Let us first 

determine the roots of the functional equation of H2/D/1 

graphically. The roots are found varying h from zero crossing 

points of Fig. 3 as shown in Table 1.  

After getting the roots θ0 of both traffic, the mean waiting 

time W in seconds is evaluated for all h and plotted in Fig. 5. 

The mean delay in H2/D/1 is found larger than that of E2/D/1. 

The variation of W is wider at higher value of h, especially for 

h ≥ 0.7 TU. Let us now observe the profile of the probability 

of immediate service and delay against variation of packet 

length.  
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Fig. 3 Profile of Functional Equation of H2/D/1. 

The variations of PI and PD are shown in Fig. 6. It is 

observed that PI decreases with the increase in h but the 

situation is reverse for PD. Probability of immediate service of 

E2/G/1 is found much larger than that of H2/D/1 case. The 

rate of decrement of PI of H2/D/1 is more prominent than that 

of E2/D/1 traffic for h ≤0.6 TU and beyond that point both 

curves become almost parallel. Again probability of delay of 

H2/D/1 is greater than that of E2/D/1 case. The slope of PD of 

H2/D/1 case is found greater than that of E2/D/1 case for h ≤ 

0.6 TU, but the curves become parallel for h>0.6TU.  Finally, 

the costs of two traffic models are compared in Fig. 7. The 

cost of E2/D/1 is found much greater than that of H2/D/1, 

where h ≤ 0.5 TU. Beyond that point costs are very close to 

each other but for h ≥ 1.4 cost of H2/D/1 is much higher than 

that of E2/D/1. The two curves intersect at h = 1.1 TU. The 

cost profile of H2/D/1 has distinct minima whereas E2/D/1 

shows the profile of hyperbola as is visualized from Fig. 7. 

Table 1: Roots of Functional Equation 
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Table 2: Roots of Functional Equation 
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                  Fig. 4 Profile of Functional Equation of E2/D/1. 
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Fig. 5 Comparison of Mean Delay between H2/D/1 and E2/D/1. 
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Fig. 6 Comparison of PI and PD of H2/D/1 and E2/D/1. 
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Fig. 7 Comparison of Cost of H2/D/1 and E2/D/1. 

V. CONCLUSION 

   In this paper we have derived traffic cost of H2/D/1 and 

E2/D/1 traffic models which match with voice traffic of 

variable bit rate with fixed length of packet. Such traffic 

model is applicable in voice communication through ATM 

link. Our finding is that H2/D/1 traffic has an optimum 

length of packet to achieve minimum traffic cost but E2/D/1 

does not have any optimum point. However, our analysis can 

suggest the minimum length of the packet beyond which 

traffic will maintain its minimum cost. The entire work can 

be extended for E2/G/1 and H2/G/1 of variable length packet 

(using the spectral solution technique of Sec. II) to observe 

the performance of voice over IP (VoIP) traffic. 
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